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The supply-demand chain is complex

Trade & Finace

Exploration
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Mining
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Processing
P
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Dissipation &
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The supply-demand chain is complex

With phosphorus management, we are facing
different types of systems!”) with different

spatial and temporal scales

Expl
|.e. material-physical (e.g. phosphorus rocks) vs. non-material socio-epistemic
(e.g. monetary) systems
or human/social systems vs. geological systems

| | | | i
v v v v v

Losses to sinks

a




What ‘human systems’ affect
what flows?

* Individuals, e.g. make decisions what they eat or
how much P-fertilizer is used

* Groups, e.g. neighbouring farmers or industry
clusters develop reference strategies

e Organizations —e.g. companies sell products;
NGOs induce norms

e Institutions; e.g. EPA set standards for monitoring
sewage to fields

* Societies/nations; e.g. provide subsidies which
affect flows

e Supranational Institutions; such as EU discuss
detergent bans from phosphorus

* Human species evolves and e.g. consumes/uses
more phosphorus




World scale -- Different national P

ba Ia n CES (There are high negative balances in some agrosystems)

P deficits (kg P ha” yr'1) P surpluses (kg P ha” yr'1) e ‘,}
~ [ ]Lowest quartile (0 to -0.8) [ Lowest quartile (0 to 2.5) '
[ Lower-middle quartile (-0.8 to -1.9) [ Lower-middle quartile (2.5 to 6.2)

B Upper-middle quartile (-1.9 to -3.2) M Upper-middle quartile (6.2 to 13.0)

B Top quartile (-3.2 to -39.0) B Top quartile (13.0 to 840.0)

MacDonald, G. K., Bennett, E. M., Potter, P. A., & Ramankutty, N. (2011). Agronomic phosphorus imbalances across the world’s
croplands. Supporting Information. Proceedings of the National Academies of Sciences of the United States of America, 108(7), 1-9.



The oceanic P cycle has
become a coupled Human-
Environment System (HES)

(Figure from Payton & MclLaughlin; 2007)
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The metabolism of P fertilizeres in

Slightly weathered soils

|

Parameter values for CS, SWS and HWS: SWS
-h=(100,150,200)
. . . -r=(0,005,0.0027,0.0008)
soils is a hypercomplex issue
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Dumas, M., Frossard, E., & Scholz, R. W. (2011). Modeling biogeochemical processes of phosphorus for global food supply.

Chemosphere(84), 798-805.

Boundaries of analyzed region




Efficiency

Is an output-input relationship (O/1)
On what system?
For what outputs and inputs?



How big is the input?

| := Input = Total P which
has been ‘affected’ to
produce the Output

O:= Output = total P
uptake by food; 1 g/d;
7*10'2 people; ca. 3 Mt
P*yr'1

Exploration

Mining

Processing

P

Use
’

Dissipation &
Recycling
D&R

Losses to sinks

11




How big is the ‘total use efficieny’ for human food uptake ¢oy)?

Jhum .= Input = Total P which Ohum:= Output = total
has been ‘affected’ to human P uptake by food; 1
produce the Ohum _Qutput g/d; 7*10'? people; ca. 3.3
Mt P*yr?
25 Mt l,,=1.1Mt
Mineral P l 2| direct use
(USGS 2012)
o ha= 1Mt
23.9 Mt feed additives
Diverse wet ~
and thermal Ly i3 T_16 Mt —
. fertilizers
processing
18.2 Mt input for
food (USGS 2012)
. . . Use Dissipation &
Exploration Mining Processing P .
P U Recycling
D8R

L3 =2-3 Mt

Losses to sinks
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Incorporating upstream losses

Jhum .= Input = Total P which Ohum:= Output = total
has been ‘affected’ to human P uptake by food; 1
produce the Ohum _Qutput g/d; 7*10*? people; ca. 3.3
Mt P*yr?
30.5 Mt 25 Mt l,,=1.1 Mt
36 Mt > - 1,1
Ca. 18% non recovery Ez.ni?igation loss Mineral P > direct use
(USGS 2012)
l o b= 1Mt
23.9 Mt feed additives
Diverse wet ~
and thermal Ly i3 T_16 Mt —
processing fertilizers
18.2 Mt input for
food (USGS 2012)
4 v v .

Dissipation &
Recycling
D&R

Exploration ; Mining Processing \

|v| P

A4 L1=2.7-5.5 Mt L2 =2.3-4.6 Mt L3 =2-3 Mt
Losses to sinks
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Incorporating inputs from weathering & the sea

Jhum .= Input = Total P which Ohum:= Output = total
has been ‘affected’ to human P uptake by food; 1
Mt P*yr1
36 Mt 30.5 Mt 25 Mt l,,=1.1Mt
e e ionine [ | Mineral P 2| direct use
(USGS 2012)
l o 1= 1Mt
23.9 Mt feed additives
Diverse wet ~
and thermal > s T_16 Mt |5
processing fertilizers
18.2 Mt input for
food
) ) ¥ :
. . i Use Dissipation &
Exploration ; Mining Processing P .
U Recycling

D&R

|v| P

A4 L1=2.7-5.5 Mt L2 =2.3-4.6 Mt L3 =2-3 Mt
Losses to sinks
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Getting a total efficiency of ca. 10%, perhaps less

Jhum .= Input = Total P which Ohum:= Output = total
has been ‘affected’ to human P uptake by food; 1
produce the O™ -Output g/d; 7*10'2 people; ca. 3.3
Mt P*yr?
36 Mt 30.5 Mt 25 Mt l,,=1.1 Mt ly4=3-5 Mt
& 18 non 1% ™| Mineral P ?| direct use from
(USGS 2012) .
— weathering
l,,=1Mt
- P .
23.9 Mt feed additives L -03
Diverse wet 16 Mt am flr'gm fish &
e | T ertizers [T guano
12 1 30
food
4 v v :
: i . Use Dissipation &
Exploration ; Mining Processing \ P .
U Recycling

D&R

|v| P

A4 L1=2.7-5.5 Mt L2 =2.3-4.6 Mt L3 =2-3 Mt
Losses to sinks
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36 Mt 30.5 Mt 25 Mt l,,=1.1 Mt |, 4= 3-5 Mt
& 18nen 1o | Mineral P ?| direct use from
(U565 2012) weatherin
€ g
> .
23.9 Mt feed additives L =03
Diverse wet 16 Mt < flr';m ﬁ.sh &
and thermal —> 137 —
. fertilizers suano
processing
: I 0
food
y v .
: . . Dissipation &
Exploration . Mining Processing \ Ref:)yclinp

|v| P

D&R

v L1 =2.7-5.5 Mt L2 = 2.3-4.6 Mt L3 =2-3 Mt
Losses to sinks

Components of losses in the use stage/node:
- Manure 6-9 Mt
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Conclusion 1: The anthropogenic P cycle is complex and

shows a low ‘human uptake efficiency’ of less the 10%
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Conclusion 1: The anthropogenic P cycle is complex and

-y

shows a low ‘human uptake efficiency’ of less the 10%
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Sattari, S. Z., Bouwman, A. F., Giller, K. E., &
van Ittersum, M. K. (2012). Residual soil
phosphorus as the missing piece in the global
phosphorus crisis puzzle. Proceedings of the
National Academy of Sciences of the United
States of America, 109(16), 6348-6353.
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P rate (kg ha™ yr'1)

How does the plant uptake efficiency for P (P-NUE)

really look like?
Africa
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A nice learning curve
P-NUE increased from
20%-50%

Sattari, S. Z., Bouwman, A. F., Giller, K. E., & van Ittersum, M. K. (2012).
Residual soil phosphorus as the missing piece in the global phosphorus
crisis puzzle. Proceedings of the National Academy of Sciences of the
United States of America, 109(16), 6348-6353.
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How does the plant uptake efficiency for P (P-NUE)
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Sattari, S. Z., Bouwman, A. F., Giller, K. E., & van Ittersum, M. K. (2012).
Residual soil phosphorus as the missing piece in the global phosphorus
crisis puzzle. Proceedings of the National Academy of Sciences of the
United States of America, 109(16), 6348-6353.
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United States of America, 109(16), 6348-6353.
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Conclusion 2: The long term plant use “P-nutrient output

efficiency” of plants (= 40%, after upstream correction by
Sattari) is better than that of humans (< 40%).
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Environmental Impacts (of P
fertilization)

* CyJones will tell more about it

* Aqguatic systems are the most vulnerable unit
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Nutrients impacts are Janus-faced




Environmental Impacts (of P
fertilization)

* CyJones will tell more about it
* Aquatic systems are the most vulnerable unit

— Freshwater (lakes) more sensitive than seawater;
the dose matters (Paracelsus principle); avoid
‘ohosphoric obesity’

— Biodiversity (of different types) may be an issue;
soil biodiversity as well

— From an evolutionary development perspective,
the rapid systemic change may show rebound
effects and tipping points



Conclusion 3: The tradeoff between increasing food
production by intense fertilization and the short and

long term impacts of ‘environmental change’ (as well as
industrial human health impacts) should be watchfully
monitored

Aquatic systems are the most vulnerable unit

— Freshwater (lakes) more sensitive than seawater;
the dose matters (Paracelsus principle); avoid
‘ohosphoric obesity’

— Biodiversity (of different types) may be an issue,
soil biodiversity as well

— From an evolutionary development perspective,

the rapid systemic change may show rebound
effects and tipping points

27



if we want and ...

P-concentration in the Lake Constance

Yes, we can ...

since 1951
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Access



Access for (i) human species and (ii) for the poor

* Do we face scarcity with phosphorus?

* |s there a (supply driven) peak phosphorus in
2030/2070 (Cordell et al. 2009, 2011)?



,‘E?EQLQ 5 SPIEGEL ONLINE INTERNATIONAL

€he New JJork Times
Tuesday, September 27, 2011 04/21/2010

Print | E-Mall | Feedback

WORLD US. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPO Essential Element Becoming Scarce

April 27, 2010, 6:42 AM

Peak Phosphorus

Experts Warn of Impending Phosphorus Crisis
By Hilmar Schmundt

Today's idea: Our dwindling supply of phosphorus for fertilizer threatens

to disrupt food security across the planet during the coming century, an

article argues. "“This is the gravest natural resource shortage you've never
heard of.”

Phosphorus is essential to agriculture, but experts warn reserves are starting to run out.

The element phosphorus is essential to human life and the most important
ingredient in fertilizer. But experts warn that the world's reserves of
phosphate rock are becoming depleted. Is recycling sewage the answer?

T —

Stephen Morrison/European Pre

ssphoto Agency

The world relies on phosphate fertilizer to meet rising demand for food: tilling the soil in Kenya.



Access for (i) human species and (ii) for the poor

* Do we face scarcity with phosphorus?

* |s there a (supply driven) peak phosphorus in
2030/2070 (Cordell et al. 2009, 2011)?



¥ | Recycling

Peak P in 20337 P reserves B EE

__________

exhausted in 50-100 years? i e

* ,The data for annual production is fitted using a
Gaussian distribution (Laherrere, 2000), based or

= 25.000 Mt RP
=221 Mt RP = 25 Gt RP
=0.02 Mt RP

e Existing rock phosphate reserves could be exhausted
in the next 50-100 years (Steen, 1998; Smil, 2000b;

Gunther, 2005) (Cordell et al., 2009, p. 298)

Cordell, D., Drangert, J., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change-Human
and Policy Dimensions, 19(2), 292-305.




Phosphorus (MT/a of P)
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A steep rise of P consumption emerged concern about scarcity

Phosphate rock
Human excreta

1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

Ashley, K., Cordell, D., & Mavinic, D. (2011). A brief history of phosphorus: From the
philosopher’s stone to nutrient recovery and reuse. (84), 737-746.



The Hubbert curve idea is that of a symmetric curve
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Billions of Barrels

Four reasons why the Hubbert
curve is not the right model for

»)

The US-oil market is a
6] demand market gf# Uaonsumption
4
US Production:
Including Alaska
Lower 48
24
0 ' y v ' . '
1900 1920 1940 1960 1980 2000
Year
The (logistic) model is nothing else than Verhulst’ s 1844
population model with
P := production at year ¢
Q := cumulative production till year t
dO(t - URR -
P(ry=C0 _ 022 _ o URR-Q,

dt 0. URR

% =r— rQ/URR Is a linear function (Hubbert linearization)

Exploration Mining || Processing - Ue
E M P ] ’

Dissipation &
Recycling

D&R

Losses to sinks

1. Itis the wrong model for global P

- Thereis no symmetric increase and decline
of production

- Thereis no static URR (ultimate
recoverable resource, 2008 15 Gt PR, 2009
65 Gt PR, 2010 71 GT PR, 67 GT 2012)

- We have facing dynamics/improvement of
technology, demand (supply driven model,
the market takes everything)

2. The difference between a supply
and demand market logics has
been ignored

3. Geological data have been
ignored (Western Phosphorus
Fields)

4. The “classical application” of the
Hubbert curve provides a

resource estimate of 8 Mt P?
36



awosin | | wig | VW€ have to understand the dynamics of
E ] M | 3
reserves:
1 Scholz, R. W., & Wellmer, F.-W. (2013). Approaching a dynamic view on the availability of mineral
hrmsmmmmmny sl resources: what we may learn from the case of phosphorus? Global Environmental Change, 23, 11-27.
_|'v_'_ Sinding-Larsen, R., & Wellmer, F.-W. (2012). Introduction. In R. Sinding-Larsen & F.-W. Wellmer (Eds.), Non-

Renewable Resource Issues. Geoscientific and Societal Challenges. International Year of the Planet Earth (I1YPE)
Series. (pp. 1-19). Dordrecht: Springer.

Geopotential
“dynamic (reserves and
---------------------------------------------- boundaries resources
: of the future,
unknown at present)

Resources
at present uneconomic



Resources follow a feedback control cycle: Prices
increase resources and recycling

5| Supply and
demand l
Price decrease
Increased
T demand
* Larger reserves l
« Higher life indices Price rise
» Shortage (scarcity) ends
A
« Higher recycling rates N H:ere:n. cr<|eat|\|/|tty
» Increased substitution ' : ewtec dnlca som:]lons -«
» Miniaturization * Increased researc
activities
» New ore deposits/types Human creativity
« Lower grade deposits « Increased exploration
become economic <— activities -
« New sources of natural « Taking higher explortation
resources risks

Wellmer, F.-W., & Dalheimer, M. (2012). The feedback control cycle as regulator of pas;c8
and future mineral supply. Mineralium Deposita, 47(7), 713-729.



We have to understand the dynamics of

Exploration = Mining _ reserves ?
3 M
?L __________ ¢ Scholz, R. W., & Wellmer, F.-W. (2013). Approaching a dynamic view on the availability of mineral
e — resources: what we may learn from the case of phosphorus? Global Environmental Change, 23, 11-27.

Sinding-Larsen, R., & Wellmer, F.-W. (2012). Introduction. In R. Sinding-Larsen & F.-W. Wellmer (Eds.), Non-
Renewable Resource Issues. Geoscientific and Societal Challenges. International Year of the Planet Earth (IYPE)
Series. (pp. 1-19). Dordrecht: Springer.

Geopotential
“dynamic (reserves and
--------------------------------------------- boundaries resources
: of the future,
unknown at present)

Resources
at present uneconomic



When does the feedback control

cycle not “function?

risks

When the P prices become intolerably high
— Not likely for P on a average world level (“P is most vulnerable for scale”)
— Low cost commodity (30 kg PR*y1*cap, 6 USD per person, 40 BUSD*y1)

When the time scale of demand changes do not meet the time scales in supply
(that’s the case with minerals)

When wrong subsidies are provided (subsidies to fertilizer companies and as a
buffer after price peaks)

When wrong information about reserves/demand/technologies are around
(Peak P may cause some nedative feedback loops; prices, geopolitical control etc.)

When markets become distorted (e.g. by monopoly, illiquidity of actors, obscuring
information, wrong subsidies, ...) and bottlenecks in some domains emerge (e.g.
2007/8 a couple of US fertilizer companies closed); good monitoring and
prospection (e.g. scenario-based models are needed)

In financial crises ...

If technology innovation fails/stops ... (decreasing ore grades seem not to be a
problem in the next decades/century)

When (irreversible) external costs/effects bounce back ... the systemic effect of
doubling/tripling P flows will change the ecosystem matrix



Phosphorus [Mt/a of P]

Conclusion 4: There will be (with close to certainty) no
necessary supply driven Peak P in the next decades/
centuries (if resources management runs well).

Acknowledging that rock phosphate is a finite resource
and P has a Janus face, the challenge is to work for a
demand driven peak P.

90 Historical \ ) Future Scholz, R. W., & Wellmer, F.-W.

: /| (2013). Approaching a dynamic
o ( </ . view on the availability of
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There is the endangerment of economic scarcity:
Providing access to phosphorus for the poor

Kg NPK/ha
900.0
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There is an unequal distribution of
phosphorus use and access

P deficits (kg P ha” yr'1) P surpluses (kg P ha” yr'1) e 6}’
~ [ Lowest quartile (0 to -0.8) [ Lowest quartile (0 to 2.5) '
[ Lower-middle quartile (-0.8 to -1.9) [ Lower-middle quartile (2.5 to 6.2)

B Upper-middle quartile (-1.9 to -3.2) M Upper-middle quartile (6.2 to 13.0)
B Top quartile (-3.2 to -39.0) B Top quartile (13.0 to 840.0)

MacDonald, G. K., Bennett, E. M., Potter, P. A., & Ramankutty, N. (2011). Agronomic phosphorus imbalances across the world’s
croplands. Supporting Information. Proceedings of the National Academies of Sciences of the United States of America, 108(7), 1-9.



Five Conclusions

The phosphorus cycle is complex, anthropogenically shaped. There is
a huge potential for increasing use efficiency along the supply chain
(Conclusion 1) and for becoming more efficient with P-NUE in some
parts of the world (Conclusion 2). Not only efficiency but the interplay
between efficiency and efficacy matters.

Phosphorus use is Janus-faced. Some environmental impacts are
evident (e.g. some Chinese lakes), but not all environmental
vulnerabilities cause by excessive use may have been identified
(Conclusion 3).

There will be no necessary physical scarcity in the next decades/
century and no supply driven Peak P. There are many reasons for
working towards a supply driven peak Phosphorus. (Conclusion 4)

Getting access to phosphorus for the poor and closing the
phosphorus cycle is the challenge. This asks for a multi-stakeholder
discourse and for the integration of knowledge science and society as
it is done in Global TraPs. (Conclusion 5)
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